翻訳と辞書 |
Commutant-associative algebra : ウィキペディア英語版 | Commutant-associative algebra In abstract algebra, a commutant-associative algebra is a nonassociative algebra over a field whose multiplication satisfies the following axiom: :, where () = ''AB'' − ''BA'' is the commutator of ''A'' and ''B'' and (''A'', ''B'', ''C'') = (''AB'')''C'' – ''A''(''BC'') is the associator of ''A'', ''B'' and ''C''. In other words, an algebra ''M'' is commutant-associative if the commutant, i.e. the subalgebra of ''M'' generated by all commutators (), is an associative algebra. ==See also==
* Valya algebra * Malcev algebra * Alternative algebra
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Commutant-associative algebra」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|